Chào mừng quý vị đến với Website Chia sẻ tài nguyên dạy và học của Hoàng Minh Phương.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
Gốc > HÀNH TRÌNH KHÁM PHÁ > Tìm hiểu thiên văn >
Lý thuyết về hố đen là một trong những lý thuyết vật lí hiếm hoi, bao trùm mọi thang đo khoảng cách, từ kích thước cực nhỏ (thang Planck) đến các khoảng cách vũ trụ rất lớn, nhờ đó nó có thể kiểm chứng cùng lúc cả thuyết lượng tử lẫn thuyết tương đối. Sự tồn tại của hố đen được dự đoán bởi lý thuyết tương đối rộng. Theo mô hình thuyết tương đối rộng cổ điển, không một vật chất hay thông tin nào có thể thoát ra khỏi hố đen để tới tầm quan sát bên ngoài được. Tuy nhiên, các hiệu ứng của cơ học lượng tử, không có trong thuyết tương đối rộng cổ điển, có thể cho phép vật chất và năng lượng bức xạ ra khỏi hố đen. Một số lý thuyết cho rằng bản chất tự nhiên của bức xạ không phụ thuộc vào những thứ đã rơi vào trong hố đen trong quá khứ, nói cách khác hố đen xóa sạch mọi thông tin quá khứ, hiện tượng này được gọi là nghịch lý thông tin hố đen. Nghịch lý này dần bị các lý thuyết mới đây loại bỏ và cho rằng thông tin vẫn được bảo toàn trong hố đen.

Nguồn tia X Cygnus X-1 được nhiều người cho rằng nó có thể là một hố đen có khối lượng bằng 10 lần khối lượng Mặt Trời quay xung quanh một ngôi sao kềnh xanh.

Ở khoảng cách đủ xa, các hạt có thể di chuyển tự do theo mọi hướng.

Gần giới hạn chân trời sự kiện, không-thời gian bị uốn cong, các hạt có xu hướng chuyển động về phía hố đen.

Phía trong chân trời sự kiện, các hạt đều chuyển động vào tâm hố đen, không thể thoát được.[1]

Bức xạ Hawking xuất phát từ ngay bên ngoài chân trời sự kiện, và cho tới nay người ta vẫn hiểu là nó không mang thông tin từ bên trong hố đen vì đó là bức xạ nhiệt. Tuy nhiên, điều này có nghĩa là các hố đen không phải là hoàn toàn đen: hiệu ứng này ngụ ý rằng khối lượng của một hố đen sẽ dần dần giảm theo thời gian. Mặc dù hiệu ứng này rất nhỏ đối với người nghiên cứu hố đen, nó chỉ đáng kể đối với các hố đen siêu nhỏ được tiên đoán lý thuyết, mà ở đó, cơ học lượng tử có tác động chính. Thực ra, các tính toán cho thấy rằng các hố đen nhỏ có thể bị bay hơi và cuối cùng sẽ biến mất trong một đợt bùng phát bức xạ. Do đó, các hố đen mà không có nguồn bổ sung cho khối lượng của chúng đều có một thời gian sống hữu hạn, và thời gian đó liên hệ với khối lượng của chúng.
Vào ngày 21 tháng 7 năm 2004 Stephen Hawking tuyên bố rằng cuối cùng thì các hố đen sẽ giải phóng các thông tin mà chúng nuốt [3], đảo ngược lại quan điểm mà ông đưa ra trước đó là thông tin sẽ bị biến mất. Ông cho rằng, nhiễu loạn lượng tử của chân trời sự kiện có thể cho phép thông tin thoát ra từ một hố đen và ảnh hưởng đến bức xạ Hawking [4]. Lý thuyết vẫn chưa được các nhà khoa học phản biện, nhưng nếu nó được chấp nhận thì dường như chúng ta đã giải quyết được nghịch lý về thông tin hố đen.
Hoàng Minh Phương @ 15:19 19/12/2009
Số lượt xem: 388
* HỐ ĐEN (PHẦN 1)
Hố đen, hay lỗ đen, là một vùng trong không gian có trường hấp dẫn lớn đến mức lực hấp dẫn của nó không để cho bất cứ một dạng vật chất nào, kể cả ánh sáng thoát ra khỏi mặt biên của nó (chân trời sự kiện), trừ khả năng thất thoát vật chất khỏi lỗ đen nhờ hiệu ứng đường hầm lượng tử. Vật chất muốn thoát khỏi lỗ đen phải có vận tốc thoát lớn hơn vận tốc ánh sáng trong chân không, mà điều đó không thể xảy ra trong khuôn khổ của lý thuyết tương đối, ở đó vận tốc ánh sáng trong chân không là vận tốc giới hạn lớn nhất có thể đạt được của mọi dạng vật chất.
Khái niệm lỗ "đen" trở thành thông dụng vì từ đó ánh sáng không lọt được ra ngoài, nhưng thực ra lí thuyết về hố đen không nói về một loại "hố" nào mà nghiên cứu về những vùng mà không có gì có thể lọt ra được. Hố đen không biểu hiện như những ngôi sao sáng bình thường, mà chúng chỉ được quan sát gián tiếp qua sự tương tác trường hấp dẫn của hố đen đối với không gian xung quanh.
Khái niệm lỗ "đen" trở thành thông dụng vì từ đó ánh sáng không lọt được ra ngoài, nhưng thực ra lí thuyết về hố đen không nói về một loại "hố" nào mà nghiên cứu về những vùng mà không có gì có thể lọt ra được. Hố đen không biểu hiện như những ngôi sao sáng bình thường, mà chúng chỉ được quan sát gián tiếp qua sự tương tác trường hấp dẫn của hố đen đối với không gian xung quanh.
Hình minh họa một hố đen cùng với bạn đồng hành của nó chuyển động gần nhau đến mức khoảng cách giữa chúng nhỏ hơn giới hạn Roche. Vật chất của ngôi sao gần đó bị hố đen nuốt tạo nên một vòng cung vật chất, một lượng vật chất năng lượng cao được phóng ra ở hai cực.
Lý thuyết về hố đen là một trong những lý thuyết vật lí hiếm hoi, bao trùm mọi thang đo khoảng cách, từ kích thước cực nhỏ (thang Planck) đến các khoảng cách vũ trụ rất lớn, nhờ đó nó có thể kiểm chứng cùng lúc cả thuyết lượng tử lẫn thuyết tương đối. Sự tồn tại của hố đen được dự đoán bởi lý thuyết tương đối rộng. Theo mô hình thuyết tương đối rộng cổ điển, không một vật chất hay thông tin nào có thể thoát ra khỏi hố đen để tới tầm quan sát bên ngoài được. Tuy nhiên, các hiệu ứng của cơ học lượng tử, không có trong thuyết tương đối rộng cổ điển, có thể cho phép vật chất và năng lượng bức xạ ra khỏi hố đen. Một số lý thuyết cho rằng bản chất tự nhiên của bức xạ không phụ thuộc vào những thứ đã rơi vào trong hố đen trong quá khứ, nói cách khác hố đen xóa sạch mọi thông tin quá khứ, hiện tượng này được gọi là nghịch lý thông tin hố đen. Nghịch lý này dần bị các lý thuyết mới đây loại bỏ và cho rằng thông tin vẫn được bảo toàn trong hố đen.
Hình dung một hố đen phía trước Ngân Hà, nặng khoảng 10 lần Mặt Trời, nhìn từ cách 600 năm ánh sáng
Từ năm 1964, khi ngôi sao "tàng hình" Cygnus X-1 của một hệ sao đôi nằm cách Trái Đất 8.000 ly trong chòm sao Thiên Nga được coi là ứng cử viên đầu tiên, chứng minh cho sự tồn tại của hố đen, các hố đen khác không chỉ được phát hiện trong Ngân Hà mà còn ở nhiều thiên thể khác. Hố đen không chỉ là những "xác chết" của những sao có khối lượng lớn hơn 1,4 M, khi chúng bùng nổ thành các siêu tân tinh trong phạm vi các thiên hà, mà hiện nay nhiều ý kiến cho rằng, tất cả các thiên hà đều chứa một hố đen siêu lớn trong vùng nhân.
chuẩn tinh nằm ở hố đen.
Lịch sử
Khái niệm một vật thể nặng đến độ ngay cả ánh sáng cũng không thể thoát khỏi vật đó đã được một nhà khoa học người Anh John Michell đưa ra vào năm 1783 trên một bài báo khoa học đăng trên tạp chí của Viện hàn lâm Hoàng gia Anh Quốc. Lúc bấy giờ, lý thuyết cơ học cổ điển của Isaac Newton về hấp dẫn và khái niệm vận tốc thoát đã được biết. Michell đã tính rằng, một vật thể có bán kính gấp 500 lần Mặt Trời và có mật độ bằng mật độ Mặt Trời thì vận tốc thoát ở bề mặt của nó bằng vận tốc ánh sáng, và do đó không ai có thể nhìn thấy nó.
Mặc dù ông nghĩ rằng điều đó rất khó xảy ra nhưng vẫn nghiên cứu khả năng rất nhiều các vật thể như thế không thể được quan sát trong vũ trụ.
Năm 1796, một nhà toán học người Pháp Pierre-Simon Laplace cũng đưa ra ý tưởng tương tự trong lần xuất bản thứ nhất và thứ hai của cuốn sách của ông, nhưng trong các lần xuất bản sau thì không đưa vào nữa. Trong suốt thế kỷ thứ 19, ý tưởng đó không gây chú ý vì người ta cho rằng ánh sáng là sóng nên không có khối lượng, và do đó không bị ảnh hưởng bởi lực hấp dẫn.
Năm 1915, Einstein đưa ra một lý thuyết hấp dẫn gọi là lý thuyết tương đối rộng. Trước đó ông đã cho thấy ánh sáng bị ảnh hưởng bởi lực hấp dẫn. Mấy tháng sau, Karl Schwarzschild đã đưa ra nghiệm cho trường hấp dẫn của một khối lượng điểm và tiên đoán về lý thuyết sự tồn tại của một vật thể mà ngày nay được gọi là hố đen. Ngày nay, bán kính Schwarzschild được coi là bán kính của một hố đen không quay, nhưng vào lúc bấy giờ người ta không hiểu rõ về nó. Bản thân Schwarzschild cũng từng nghĩ rằng nó không có ý nghĩa vật lý.
Khái niệm một vật thể nặng đến độ ngay cả ánh sáng cũng không thể thoát khỏi vật đó đã được một nhà khoa học người Anh John Michell đưa ra vào năm 1783 trên một bài báo khoa học đăng trên tạp chí của Viện hàn lâm Hoàng gia Anh Quốc. Lúc bấy giờ, lý thuyết cơ học cổ điển của Isaac Newton về hấp dẫn và khái niệm vận tốc thoát đã được biết. Michell đã tính rằng, một vật thể có bán kính gấp 500 lần Mặt Trời và có mật độ bằng mật độ Mặt Trời thì vận tốc thoát ở bề mặt của nó bằng vận tốc ánh sáng, và do đó không ai có thể nhìn thấy nó.
Mặc dù ông nghĩ rằng điều đó rất khó xảy ra nhưng vẫn nghiên cứu khả năng rất nhiều các vật thể như thế không thể được quan sát trong vũ trụ.
Năm 1796, một nhà toán học người Pháp Pierre-Simon Laplace cũng đưa ra ý tưởng tương tự trong lần xuất bản thứ nhất và thứ hai của cuốn sách của ông, nhưng trong các lần xuất bản sau thì không đưa vào nữa. Trong suốt thế kỷ thứ 19, ý tưởng đó không gây chú ý vì người ta cho rằng ánh sáng là sóng nên không có khối lượng, và do đó không bị ảnh hưởng bởi lực hấp dẫn.
Năm 1915, Einstein đưa ra một lý thuyết hấp dẫn gọi là lý thuyết tương đối rộng. Trước đó ông đã cho thấy ánh sáng bị ảnh hưởng bởi lực hấp dẫn. Mấy tháng sau, Karl Schwarzschild đã đưa ra nghiệm cho trường hấp dẫn của một khối lượng điểm và tiên đoán về lý thuyết sự tồn tại của một vật thể mà ngày nay được gọi là hố đen. Ngày nay, bán kính Schwarzschild được coi là bán kính của một hố đen không quay, nhưng vào lúc bấy giờ người ta không hiểu rõ về nó. Bản thân Schwarzschild cũng từng nghĩ rằng nó không có ý nghĩa vật lý.
Vào những năm 1920, Subrahmanyan Chandrasekhar đã đưa ra tính toán cho thấy rằng một vật thể không quay có khối lượng lớn hơn một giá trị nhất định mà ngày nay được biết là giới hạn Chandrasekhar, sẽ suy sập dưới lực hấp dẫn của chính nó và không có gì có thể cản trở quá trình đó diễn ra. Tuy nhiên, một nhà vật lý khác là Arthur Eddington chống lại giả thuyết đó và cho rằng chắc chắn sẽ có cái gì đó xảy ra để không cho vật chất suy sụp đến mật độ vô hạn.
Năm 1939, Robert Oppenheimer và H. Snyder tiên đoán rằng các ngôi sao nặng sẽ phải chịu quá trình suy sập do hấp dẫn. Các hố đen có thể hình thành trong tự nhiên. Trong một thời gian, người ta gọi các vật thể như vậy là các "ngôi sao bị đóng băng" vì sự suy sập sẽ bị chậm đi một cách nhanh chóng và ngôi sao sẽ trở nên rất đỏ khi đạt đến gần giới hạn Schwarzschild. Tuy vậy, các vật thể nặng như thế không được quan tâm lắm cho đến cuối những năm 1960. Phần lớn các nhà vật lý, vào lúc đó, tin rằng hố đen là một nghiệm đối xứng cao đặc biệt do Schwarzschild tìm ra, và các vật thể bị suy sập trong tự nhiên sẽ không tạo nên các hố đen.
Việc nghiên cứu về hố đen trở nên sôi nổi vào năm 1967 do sự tiến bộ của lý thuyết và thực nghiệm. Stephen Hawking và Roger Penrose đã chứng minh rằng các hố đen là các nghiệm tổng quát của lý thuyết hấp dẫn của Einstein, và sự suy sập để tạo nên hố đen, trong một số trường hợp, là không thể tránh được. Sự quan tâm đến lĩnh vực này còn được khởi phát từ việc tìm ra sao pulsar. Ngay sau đó, nhà vật lý John Wheeler đã sử dụng từ "hố đen" để chỉ các vật thể sau khi bị suy sập đến mật độ vô hạn mặc dù trước đó một thời gian, từ "ngôi sao đen" thỉnh thoảng được sử dụng.
Các khái niệm
Nghiên cứu hố đen yêu cầu các kiến thức về lý thuyết tương đối rộng của không-thời gian cong: tính chất đặc biệt nhất là sự biến dạng của không-thời gian xung quanh các hố đen.
Chân trời sự kiện
"Bề mặt" của hố đen được gọi là chân trời sự kiện, đó là một bề mặt ảo xung quanh hố đen. Stephen Hawking đã sử dụng định lý Gauss-Bonnet để chứng minh rằng hình học tô pô của chân trời sự kiện của một hố đen (bốn chiều) là một hình cầu. Tại chân trời sự kiện, vận tốc thoát chính bằng vận tốc ánh sáng. Do đó, bất kỳ vật gì, kể cả quang tử (photon) bên trong chân trời sự kiện đều không thể thoát khỏi chân trời sự kiện đó vì trường hấp dẫn quá mạnh của hố đen. Các hạt bị rơi vào hố đen sẽ không thể thoát ra được.
Năm 1939, Robert Oppenheimer và H. Snyder tiên đoán rằng các ngôi sao nặng sẽ phải chịu quá trình suy sập do hấp dẫn. Các hố đen có thể hình thành trong tự nhiên. Trong một thời gian, người ta gọi các vật thể như vậy là các "ngôi sao bị đóng băng" vì sự suy sập sẽ bị chậm đi một cách nhanh chóng và ngôi sao sẽ trở nên rất đỏ khi đạt đến gần giới hạn Schwarzschild. Tuy vậy, các vật thể nặng như thế không được quan tâm lắm cho đến cuối những năm 1960. Phần lớn các nhà vật lý, vào lúc đó, tin rằng hố đen là một nghiệm đối xứng cao đặc biệt do Schwarzschild tìm ra, và các vật thể bị suy sập trong tự nhiên sẽ không tạo nên các hố đen.
Việc nghiên cứu về hố đen trở nên sôi nổi vào năm 1967 do sự tiến bộ của lý thuyết và thực nghiệm. Stephen Hawking và Roger Penrose đã chứng minh rằng các hố đen là các nghiệm tổng quát của lý thuyết hấp dẫn của Einstein, và sự suy sập để tạo nên hố đen, trong một số trường hợp, là không thể tránh được. Sự quan tâm đến lĩnh vực này còn được khởi phát từ việc tìm ra sao pulsar. Ngay sau đó, nhà vật lý John Wheeler đã sử dụng từ "hố đen" để chỉ các vật thể sau khi bị suy sập đến mật độ vô hạn mặc dù trước đó một thời gian, từ "ngôi sao đen" thỉnh thoảng được sử dụng.
Các khái niệm
Nghiên cứu hố đen yêu cầu các kiến thức về lý thuyết tương đối rộng của không-thời gian cong: tính chất đặc biệt nhất là sự biến dạng của không-thời gian xung quanh các hố đen.
Chân trời sự kiện
"Bề mặt" của hố đen được gọi là chân trời sự kiện, đó là một bề mặt ảo xung quanh hố đen. Stephen Hawking đã sử dụng định lý Gauss-Bonnet để chứng minh rằng hình học tô pô của chân trời sự kiện của một hố đen (bốn chiều) là một hình cầu. Tại chân trời sự kiện, vận tốc thoát chính bằng vận tốc ánh sáng. Do đó, bất kỳ vật gì, kể cả quang tử (photon) bên trong chân trời sự kiện đều không thể thoát khỏi chân trời sự kiện đó vì trường hấp dẫn quá mạnh của hố đen. Các hạt bị rơi vào hố đen sẽ không thể thoát ra được.

Nguồn tia X Cygnus X-1 được nhiều người cho rằng nó có thể là một hố đen có khối lượng bằng 10 lần khối lượng Mặt Trời quay xung quanh một ngôi sao kềnh xanh.
Theo lý thuyết tương đối rộng cổ điển, các hố đen có thể hoàn toàn được đặc trưng bởi ba thông số: khối lượng, mô men động lượng và điện tích. Nguyên lý này đã được John Wheeler tóm tắt trong câu nói "hố đen không có tóc".
Các vật thể chuyển động trong trường hấp dẫn thì thời gian sẽ bị chậm đi được gọi là sự giãn nở của thời gian. Điều này đã được chứng minh bằng thực nghiệm trong một thí nghiệm phóng tên lửa do thám vào năm 1976 [1], và được tính đến trong Hệ thống định vị toàn cầu (GPS). Gần chân trời sự kiện, sự giãn nở thời gian xảy ra rất nhanh. Đối với một người quan sát từ bên ngoài thì họ sẽ đợi một khoảng thời gian vô tận để quan sát vật thể khi vật thể đến gần chân trời sự kiện vì ánh sáng từ vật thể bị dịch chuyển vô hạn về phía đỏ.
Điểm kỳ dị
Tại tâm của hố đen, bên trong chân trời sự kiện, lý thuyết tương đối rộng tiên đoán có một điểm kỳ dị (singularity), tại đó độ cong của không thời gian trở nên vô hạn và lực hấp dẫn cũng mạnh vô hạn. Không-thời gian bên trong chân trời sự kiện rất đặc biệt, trong đó tất cả các vật chất đều chuyển động vào tâm mà không thể cưỡng lại được (Penrose và Hawking [2]). Điều này có nghĩa là tồn tại một sai lầm về khái niệm về hố đen mà John Michell đề xuất trước đây. Theo lý thuyết của Michell, vận tốc thoát bằng vận tốc ánh sáng, tuy vậy, vẫn còn một xác suất lý thuyết để vật thể có thể thoát ra giống như kéo vật thể ra ngoài bằng một sợi dây. Lý thuyết tương đối rộng loại bỏ những kẽ hở (loophole) như thế này vì vật thể nằm trong chân trời sự kiện thì thời gian tuyến sẽ có một điểm kết cho bản thân thời gian, và không thể có được vũ trụ tuyến khả dĩ mà có thể thoát ra khỏi hố đen được.
Người ta tin rằng những tiến triển hoặc khái quát hóa lý thuyết tương đối rộng trong tương lai (đặc biệt là hấp dẫn lượng tử) sẽ làm thay đổi suy nghĩ của chúng ta về phần bên trong của hố đen. Phần lớn các nhà lý thuyết đều giải thích điểm kỳ dị về toán học của các phương trình là dấu hiệu cho thấy lý thuyết hiện hành là không hoàn thiện, và rằng các hiện tượng mới sẽ được phát hiện khi ta tiến gần đến điểm kỳ dị. Câu hỏi này có thể rất hàn lâm vì giả thuyết giám sát vũ trụ đòi hỏi không thể có mặt các điểm kỳ dị trần trụi trong lý thuyết tương đối rộng: mỗi điểm kỳ dị phải nấp sau chân trời sự kiện và không thể bị khám phá.
Một trường phái tư tưởng khác cho rằng chẳng có điểm kỳ dị nào cả, bởi vì, các lực giống như lực gây ra thủy triều sẽ làm giảm mật độ vật chất khi nó đi xuyên qua chân trời sự kiện. Nếu một nhà du hành vũ trụ lỡ để chân của anh ta rơi vào hố đen thì các lực thủy triều dọc theo bán kính sẽ kéo đầu và chân của anh ta theo hai hướng ngược nhau và do đó, sẽ làm giảm mật độ (tức là tăng thể tích) trong khi đó thì lực thủy triều tại một bán kính không đổi có xu hướng kéo hai tay anh ta lại với nhau khi bán kính hội tụ, làm gia tăng mật độ (giảm thể tích). Tuy nhiên, tại chân trời sự kiện, bán kính đó lại song song với nhau trong giản đồ nhúng (giản đồ để hình dung nghiệm Schwarzschild trong không gian Euclide), không hội tụ, do đó, mật độ vật chất sẽ giảm và làm dừng quá trình suy sập hấp dẫn.
Đi vào một hố đen
Ảnh hưởng của trường hấp dẫn của hố đen có thể xác định từ lý thuyết tương đối. Khi một vật thể tiến lại gần tâm của hố đen không quay (hố đen Schwarzschild) thì người quan sát từ xa sẽ thấy vật thể đó tiến đến chân trời sự kiện một cách chậm dần vì một quang tử từ vật thể đó phải mất một thời gian lâu hơn để thoát ra khỏi ảnh hưởng của hố đen để cho người quan sát biết số phận của vật thể đó.
Các vật thể chuyển động trong trường hấp dẫn thì thời gian sẽ bị chậm đi được gọi là sự giãn nở của thời gian. Điều này đã được chứng minh bằng thực nghiệm trong một thí nghiệm phóng tên lửa do thám vào năm 1976 [1], và được tính đến trong Hệ thống định vị toàn cầu (GPS). Gần chân trời sự kiện, sự giãn nở thời gian xảy ra rất nhanh. Đối với một người quan sát từ bên ngoài thì họ sẽ đợi một khoảng thời gian vô tận để quan sát vật thể khi vật thể đến gần chân trời sự kiện vì ánh sáng từ vật thể bị dịch chuyển vô hạn về phía đỏ.
Điểm kỳ dị
Tại tâm của hố đen, bên trong chân trời sự kiện, lý thuyết tương đối rộng tiên đoán có một điểm kỳ dị (singularity), tại đó độ cong của không thời gian trở nên vô hạn và lực hấp dẫn cũng mạnh vô hạn. Không-thời gian bên trong chân trời sự kiện rất đặc biệt, trong đó tất cả các vật chất đều chuyển động vào tâm mà không thể cưỡng lại được (Penrose và Hawking [2]). Điều này có nghĩa là tồn tại một sai lầm về khái niệm về hố đen mà John Michell đề xuất trước đây. Theo lý thuyết của Michell, vận tốc thoát bằng vận tốc ánh sáng, tuy vậy, vẫn còn một xác suất lý thuyết để vật thể có thể thoát ra giống như kéo vật thể ra ngoài bằng một sợi dây. Lý thuyết tương đối rộng loại bỏ những kẽ hở (loophole) như thế này vì vật thể nằm trong chân trời sự kiện thì thời gian tuyến sẽ có một điểm kết cho bản thân thời gian, và không thể có được vũ trụ tuyến khả dĩ mà có thể thoát ra khỏi hố đen được.
Người ta tin rằng những tiến triển hoặc khái quát hóa lý thuyết tương đối rộng trong tương lai (đặc biệt là hấp dẫn lượng tử) sẽ làm thay đổi suy nghĩ của chúng ta về phần bên trong của hố đen. Phần lớn các nhà lý thuyết đều giải thích điểm kỳ dị về toán học của các phương trình là dấu hiệu cho thấy lý thuyết hiện hành là không hoàn thiện, và rằng các hiện tượng mới sẽ được phát hiện khi ta tiến gần đến điểm kỳ dị. Câu hỏi này có thể rất hàn lâm vì giả thuyết giám sát vũ trụ đòi hỏi không thể có mặt các điểm kỳ dị trần trụi trong lý thuyết tương đối rộng: mỗi điểm kỳ dị phải nấp sau chân trời sự kiện và không thể bị khám phá.
Một trường phái tư tưởng khác cho rằng chẳng có điểm kỳ dị nào cả, bởi vì, các lực giống như lực gây ra thủy triều sẽ làm giảm mật độ vật chất khi nó đi xuyên qua chân trời sự kiện. Nếu một nhà du hành vũ trụ lỡ để chân của anh ta rơi vào hố đen thì các lực thủy triều dọc theo bán kính sẽ kéo đầu và chân của anh ta theo hai hướng ngược nhau và do đó, sẽ làm giảm mật độ (tức là tăng thể tích) trong khi đó thì lực thủy triều tại một bán kính không đổi có xu hướng kéo hai tay anh ta lại với nhau khi bán kính hội tụ, làm gia tăng mật độ (giảm thể tích). Tuy nhiên, tại chân trời sự kiện, bán kính đó lại song song với nhau trong giản đồ nhúng (giản đồ để hình dung nghiệm Schwarzschild trong không gian Euclide), không hội tụ, do đó, mật độ vật chất sẽ giảm và làm dừng quá trình suy sập hấp dẫn.
Đi vào một hố đen
Ảnh hưởng của trường hấp dẫn của hố đen có thể xác định từ lý thuyết tương đối. Khi một vật thể tiến lại gần tâm của hố đen không quay (hố đen Schwarzschild) thì người quan sát từ xa sẽ thấy vật thể đó tiến đến chân trời sự kiện một cách chậm dần vì một quang tử từ vật thể đó phải mất một thời gian lâu hơn để thoát ra khỏi ảnh hưởng của hố đen để cho người quan sát biết số phận của vật thể đó.
Ở khoảng cách đủ xa, các hạt có thể di chuyển tự do theo mọi hướng.
Gần giới hạn chân trời sự kiện, không-thời gian bị uốn cong, các hạt có xu hướng chuyển động về phía hố đen.
Phía trong chân trời sự kiện, các hạt đều chuyển động vào tâm hố đen, không thể thoát được.[1]
Đối với bản thân vật thể, nó sẽ đi qua chân trời sự kiện và đến điểm kỳ dị, hoặc vào tâm của hố đen trong một khoảng thời gian hữu hạn. Khi nó đi qua chân trời sự kiện thì ánh sáng không thể thoát khỏi hố đen được nữa nên người quan sát ở ngoài hố đen sẽ không còn có thể biết thông tin của vật thể. Khi vật thể tiến gần hơn nữa đến điểm kỳ dị, nó sẽ bị kéo dài ra và ánh sáng phát ra từ phần vật thể gần hố đen nhất sẽ bị dịch chuyển đỏ (hiệu ứng Doppler cho ánh sáng) cho đến khi tất cả các phần biến mất. Gần điểm kỳ dị, sự sai khác của trường hấp dẫn giữa điểm gần và điểm xa trên vật thể rất lớn, điều này sẽ tạo nên một lực thủy triều làm cho vật thể bị kéo và bị xé ra, điều này được gọi là quá trình "tạo mì ống" (spaghettification).
Về lý thuyết, chân trời sự kiện của một hố đen không quay là một hình cầu, và điểm kỳ dị của nó là một điểm. Nếu hố đen có mô men góc (thừa hưởng từ ngôi sao quay trước khi bị suy sập thành hố đen) thì nó sẽ kéo theo cả không-thời gian xung quanh chân trời sự kiện. Vùng không gian xung quanh chân trời sự kiện được gọi là hình cầu cơ công và có dạng một hình e-líp. Vì hình cầu cơ công định vị bên ngoài chân trời sự kiện nên các vật thể có thể tồn tại bên trong hình cầu cơ công mà không bị rơi vào hố đen. Tuy nhiên, vì bản thân không-thời gian chuyển động bên trong hình cầu cơ công nên các vật thể không thể có một vị trí cố định. Các vật thể trượt trên hình cầu cơ công vài lần có thể bị văng ra ngoài với vận tốc rất lớn và giải thoát năng lượng (và mô men góc) khỏi hố đen - do đó mới có tên "hình cầu cơ công" vì nó có khả năng tạo ra công cơ học.
Entropy và bức xạ Hawking
Năm 1971, Stephen Hawking chứng minh rằng diện tích của chân trời sự kiện của bất kỳ hố đen cổ điển đều không bao giờ giảm. Điều này tương tự như định luật thứ hai của nhiệt động lực học, trong đó vai trò của diện tích của chân trời sự kiện tương ứng với entropy. Người ta có thể vi phạm nguyên lý thứ hai của nhiệt động lực học bằng việc vật chất trong vũ trụ của chúng ta đi vào hố đen và do đó làm giảm entropy của toàn vũ trụ. Chính vì vậy mà Jacob Bekenstein giả thiết rằng hố đen cũng có entropy và entropy của nó tỷ lệ với diện tích của chân trời sự kiện. Tuy nhiên, 1974, Hawking áp dụng lý thuyết trường lượng tử cho không-thời gian cong xung quanh chân trời sự kiện của hố đen và phát hiện ra rằng các hố đen có thể phát xạ nhiệt - bức xạ mà hố đen phát ra được gọi là bức xạ Hawking. Sử dụng định luật thứ nhất của cơ học hố đen người ta thấy rằng entropy của hố đen bằng một phần tư diện tích của chân trời sự kiện. Đây là một kết quả phổ quát, có thể áp dụng cho chân trời vũ trụ trong không-thời gian de Sitter. Sau đó, người ta còn cho rằng, hố đen là các vật thể có entropy cực đại, tức là, trong vùng không-thời gian nào đó, entropy cực đại chính là entropy của hố đen chiếm vùng không thời gian đó. Điều này dẫn đến nguyên lý ảnh ba chiều (còn gọi là nguyên lý ảnh đa chiều).
Entropy và bức xạ Hawking
Năm 1971, Stephen Hawking chứng minh rằng diện tích của chân trời sự kiện của bất kỳ hố đen cổ điển đều không bao giờ giảm. Điều này tương tự như định luật thứ hai của nhiệt động lực học, trong đó vai trò của diện tích của chân trời sự kiện tương ứng với entropy. Người ta có thể vi phạm nguyên lý thứ hai của nhiệt động lực học bằng việc vật chất trong vũ trụ của chúng ta đi vào hố đen và do đó làm giảm entropy của toàn vũ trụ. Chính vì vậy mà Jacob Bekenstein giả thiết rằng hố đen cũng có entropy và entropy của nó tỷ lệ với diện tích của chân trời sự kiện. Tuy nhiên, 1974, Hawking áp dụng lý thuyết trường lượng tử cho không-thời gian cong xung quanh chân trời sự kiện của hố đen và phát hiện ra rằng các hố đen có thể phát xạ nhiệt - bức xạ mà hố đen phát ra được gọi là bức xạ Hawking. Sử dụng định luật thứ nhất của cơ học hố đen người ta thấy rằng entropy của hố đen bằng một phần tư diện tích của chân trời sự kiện. Đây là một kết quả phổ quát, có thể áp dụng cho chân trời vũ trụ trong không-thời gian de Sitter. Sau đó, người ta còn cho rằng, hố đen là các vật thể có entropy cực đại, tức là, trong vùng không-thời gian nào đó, entropy cực đại chính là entropy của hố đen chiếm vùng không thời gian đó. Điều này dẫn đến nguyên lý ảnh ba chiều (còn gọi là nguyên lý ảnh đa chiều).

Vật chất rơi vào hố đen sẽ tập hợp lại với nhau tạo nên một đĩa gia tốc quay rất nhanh và rất nóng xung quanh hố đen trước khi bị nó nuốt. Ma sát xuất hiện tại những vùng lân cận đĩa làm cho đĩa trở nên vô cùng nóng và được thoát ra dưới dạng tia X. Các tính toán khác tiên đoán các hiệu ứng trong đó các luồng hạt chuyển động rất nhanh với vận tốc gần bằng vận tốc ánh sáng được phóng ra ở hai trục của đĩa.
Bức xạ Hawking xuất phát từ ngay bên ngoài chân trời sự kiện, và cho tới nay người ta vẫn hiểu là nó không mang thông tin từ bên trong hố đen vì đó là bức xạ nhiệt. Tuy nhiên, điều này có nghĩa là các hố đen không phải là hoàn toàn đen: hiệu ứng này ngụ ý rằng khối lượng của một hố đen sẽ dần dần giảm theo thời gian. Mặc dù hiệu ứng này rất nhỏ đối với người nghiên cứu hố đen, nó chỉ đáng kể đối với các hố đen siêu nhỏ được tiên đoán lý thuyết, mà ở đó, cơ học lượng tử có tác động chính. Thực ra, các tính toán cho thấy rằng các hố đen nhỏ có thể bị bay hơi và cuối cùng sẽ biến mất trong một đợt bùng phát bức xạ. Do đó, các hố đen mà không có nguồn bổ sung cho khối lượng của chúng đều có một thời gian sống hữu hạn, và thời gian đó liên hệ với khối lượng của chúng.
Vào ngày 21 tháng 7 năm 2004 Stephen Hawking tuyên bố rằng cuối cùng thì các hố đen sẽ giải phóng các thông tin mà chúng nuốt [3], đảo ngược lại quan điểm mà ông đưa ra trước đó là thông tin sẽ bị biến mất. Ông cho rằng, nhiễu loạn lượng tử của chân trời sự kiện có thể cho phép thông tin thoát ra từ một hố đen và ảnh hưởng đến bức xạ Hawking [4]. Lý thuyết vẫn chưa được các nhà khoa học phản biện, nhưng nếu nó được chấp nhận thì dường như chúng ta đã giải quyết được nghịch lý về thông tin hố đen.
Sưu tầm.
Hoàng Minh Phương @ 15:19 19/12/2009
Số lượt xem: 388
Số lượt thích:
0 người
 
- * Hình ảnh ấn tượng về sao Ma mút (10/12/09)
- * Những hang động đẹp nhất thế giới (26/10/09)
- * Những đỉnh núi đẹp nhất thế giới (26/10/09)
- * Hình ảnh đẹp về Trái đất (30/09/09)
- * 10 câu đố vui về vũ trụ (29/09/09)
Các ý kiến mới nhất